Article Type : Review Article
Authors : Kaur KK1, Allahbadia G and Singh M
Keywords : Multiple sclerosis; T helper cells; Neuroinflammation; Immunotherapies
Multiple Sclerosis (MS)
represents a chronic inflammatory autoimmune condition like other autoimmune
ones such as rheumatoid arthritis (RA), Psoariasis, Endometriosis, etc. MS
results in continuous depletion of axonal myelin in various regions of the central
nervous System (CNS) & influences the occurrence of a variety of clinical
symptoms like muscle spasms, optic neuritis as well as paralysis. Over a decade
advances made in research conducted in animal models of MS to get better
insight of pathophysiology of MS disease corroborated that MS is an autoimmune
inflammatory disorder secondary to recruitment of self-reactive lymphocytes,
basically CD4+T cells in the CNS. Actually high concentrations of T helper
cells (Th) cell subsets as well as associated cytokines as well as chemokines
have been observed in the CNS lesions as well as cerebrospinal; fluid (CSF) of
MS patients ,along with breakdown of blood brain barrier (BBB), as well as
consequent activation of resident astrocytes as well as microglia and ultimately
neuroinflammation. Thus we decided to do a systematic review utilizing the
Pubmed Engine, Google Scholar Web of Science utilizing the MeSH terms like Th
cell kinds like Th1; Th 17; Th22; Th9 and others from 1980 till date on 31st
July 2020. We found over 25,000 articles out of which we selected 154 articles
for this review to study the influence of the variety of Th like cells involved
in the aetiopathogenesis. No meta-analysis was conducted. Till date various
kinds of Th cells have been discovered and named as per the liberated lineage
defining cytokines. Significantly Th 1, Th17, Th22, Th9 as well as Th1 like
Th17 have been correlated with MS. Thus we have detailed the crosstalk of
various Th cell subpopulations as well as their lineage defining cytokines in
manipulating the inflammatory responses in MS along with how the innovative
drugs that have received FDA approval interact which target T lymphocytes for
the therapy of the disease.
Multiple Sclerosis (MS) represents a chronic inflammatory autoimmune condition of the central nervous System (CNS) that influences roughly 2-3 million people worldwide which gets initiated by both environmental as well as genetic factors [1]. Roughly 15-30% of cases with MS present with relapse-remitting (RR) clinical course, that has the properties of acute episodes of neurological abnormalities like optic neuritis, sensory alterations or motor dysfunction, that is mostly followed by times of remission or recovery [2,3]. Following different time courses, roughly 50% of RRMS patients propagate to a chronic secondary progressive (SP) clinical stage, having the properties of gradually declining condition. In approximately 15% of patients, MS is propagating right from its initiation, known as primary progressive (PP) MS, a clinical course that has the properties of a slow and continuous deterioration in the neurological function’s [4]. Basic etiopathological typical property is the breaking of the blood brain barrier (BBB), loss of oligodendrocytes, demyelination, and astrocytes gliosis along with axonal degeneration [5]. Inflammation exists in all stages, with key role of pro inflammatory cytokines as well as chemokines in the etiopathology of MS by compromise of blood brain barrier (BBB), immune cell recruitition via the periphery as well as activation of resident microglia. Microglial activation is believed to be one of the initial processes in the formation of MS lesions. Activated Microglial, actually is believed to add to the disease propagation by liberating inflammatory cytokines as well as chemokines along with reactive oxygen species (ROS) as well as glutamate [6]. MS getting converted from RR to the progressive phase has also been associated with continued chronic Inflammation in the CNS. Furthermore both SPMS as well as PPMS patients present with generalized Inflammation in the total brain that is associated with cortical demyelination as well as diffuse damage of the white matter [7]. Despite every cell kind of the innate as well as adaptive immune system might bring about the inflammatory response among the CNS, an essential aid is through the autoreactive CD4+T cells. Autoreactive T cells most probably activated in the peripheral lymph node migrate into the CNS [8], where they get reactivated as well as liberate cytokines as well as chemokines which manipulate the inflammatory lesions that are classical of MS [9]. Like, the robust genetic risk factor for MS is the human leukocyte antigen(HLA)-DRB*15:01, a major histocompatibility complex (MHC)class II allele that is implicated in the presentation of self-peptides to CD4+T cells [10]. This review has the objective of giving a detailed part of various CD4+T helper cells (Th) cell subsets in the etiopathophysiology of MS along with present treatment methods which target T cell-mediated responses. The part of regulatory T (Treg) cells in repressing the function of autoreactive Th cell in MS is further detailed.
Subsets
of Th cell
CD4+T
cells represent the central controllers of the adaptive immune response that
works opposite to a lot of microbes utilizing the aiding B lymphocytes to
generate antibodies (Ab) by liberating particular cytokines which offer
efficacious protection from pathogens. Separate Th cell Subsets, generating 1
or greater lineage defining cytokines as well as expressing master
transcription factors as well as homing receptors, differentiate from naive CD4+T
cells after provocation by a particular class of pathogenic microorganisms along
with to the cytokines surroundings. Naive CD4+T cells get activated
inside the peripheral Lymph Nodes through mature dendritic cells (DC’s) which
present pathogen derived peptides correlated with MHC as well as costimulatory
molecules facilitate T cells proliferation along with forming polarising cytokines
that then stimulate T cells differentiation into separate Th cell Subsets, like
Th 1, Th2, Th17, Th22 as well as Th9 [11]. Additionally to this protective aspect
from pathogens, Separate Th cell Subsets display a key part in the pathogenesis
as described.
Th 1 cells
Th 1 Cells
got isolated in the late 80’s [12]. Being a subset of CD4+T cells
which bring about effective adaptive immune response from intracellular
pathogens by liberating Interferon (IFN) which activates macrophages for killing
intracellular microbes along with facilitating the generation of opsonising Ab [11].
Th 1 can get isolated through surface expression of the CXC chemokine Receptor Type
3(CXCR3) as well as interleukin (IL)-12 Receptor (IL-12 R) chains
, in
addition to the intracytoplasmic expression of the master transcription factor T-bet
[13]. IL)-12 as well as IFN
work together for the induction of the expression
of T-bet, hence escalating the Th 1 polarization [14]. Earlier studies conducted
in an experimental autoimmune encephalomyelitis (EAE) aimal model of MS showed
a key part of Th 1 Cells in the pathogenesis of MS. Actually IFN
librerating Th
1 Cells were identified as the most common Th 1 Cells subset in the central
nervous system (CNS) as well as EAE animals [15]. Plenty of IFN
was identified
in the CNS lesions of EAE [16] along with the active lesions of MS patients [17],
as well as the adoptive transfer of Th 1 Cells was enough to generate EAE in
the mice receiving it [18], These results along with initial observations that
delivery of IFN
to MS patients augmented the disease [19], that is further
corroborated by the significant part of IL-12/ IFN
axis as well as Th 1 Cells
in both EAE as well as MS pathogenesis. Despite the neuropathological part of
infiltrated Th 1 Cells into the CNS is not known properly, there are different proofs
pointing that microglia is the main cell target of Th 1 Cells. Microglia represent
the resident macrophages of CNS, based on the type of external stimuli , might
differentiate into inflammatory M1 like or anti- inflammatory M2 like phenotype
[20]. Th 1 Cells generate various effector molecules which activate resident microglia
along with initiating their differentiation into the inflammatory as well as neurotoxic
M1 like phenotype [21]. Further Th 1 Cells promote the upregulation of class II
MHC as well as costimulatory molecules present on microglia, hence facilitating
the reactivation of the infiltrated Th Cells along with their differentiation
further [22]. Nevertheless
, more research regarding mice deficient in IL-12p35 subunits [23] or IL-12R
2
chain [24] or IFN
[25] were prone to EAE in addition to the results
demonstrating that delivery of IL-12 at the time of initial phases, the disease
repressed EAE in an IFN
dependent way [23], reduced the significance of this
concept that Th 1 Cells were the major pathogenic Cells subset in EAE as well
as MS. Ultimately the invention that IL-23 shares the p40 subunits with IL-12 [26]
as well as IL-23R comprises or IL-12R
1 chain [27], explained these conflicting
results as well as explained the part of IL-23 in facilitating EAE by
initiating as well as stimulating the expansion of Th 17 Cells, that is a subset
of Th Cells that generates IL-17 [28,29].
Th 17 cells
Th 17 Cells
got isolated by 2005 [28], being a significant subset of CD4+T cells
which bring about effective immune response against extracellular bacteria as
well as fungi [30]. Th 17 Cells might be isolated depending on the particular
surface markers like CD161. The chemokine receptor CCR6 as well as CCR4, thecytokine
receptors IL-23R as well as IL-1R [31], the intracytoplamic expression of
retinoic acid as well as receptor-associated orphan nuclear receptor (ROR
)
as well as the generation of particular cytokines like IL-17A-, IL-21 as well
as IL-22 [32]. Especially IL-17A as well as IL-17F work on various cell kinds,
like macrophages, epithetlial as well as endothelial cells by stimulating the
expression of inflammatory cytokines as well as chemokines as well as facilitating
the recruitment of neutrophils in inflammatory zones [33]. IL-21 gives a
positive feedback loop for good expansion of the Th 17 Cells subsets [34], while
IL-22 works on epithelial cells facilitating the generation of anti-microbial
peptides along with mucus [35]. Besides these roles of facilitating the host
defense against pathogens, tissue damage might also result ending in chronic inflammatory
diseases [36]. Noticeably Th 17 Cells are implicated in the pathogenesis of
various autoimmune diseases that includes MS [37], where they have a key part
in disrupting the blood brain barrier (BBB) [38] Along with targeting resident
astrocytes as well as microglia within the CNS & hence facilitate their
activation as well as neuroinflammation in EAE [21,39,40] (Figure 1). Especially
Th 17 Cells are markedly efficacious in controlling astrocytes instead of
microglia. Astrocytes represent resident CNS cells having particular anatomical
positions along with morphological as well as functional properties. Their
location is at the border between the BBB as well as neurons and control the
motion of molecules as well as cells among circulation as well as CNS.
Furthermore by generating neutrotrophic factors (NF’s) they also control
neurogenesis along with tissue repair. Secondary to CNS damage, astrocytes go
through significant morphological as well as functional alterations, a process
known a astrogliosis [41]. Astrocytes express a functional IL-17 receptor A which
is upregulated more in EAE [42]. IL-17 is known to upregulate the generation of
inflammatory cytokines as well as chemokines [43] along with IL-17 signaling once
dysfunctional in astrocytes abrogates EAE [44]. Th 17 Cells along with aid of Th
1 have been demonstrated to control the function of astrocytes via stimulating
the downregulation of NF’s as well as the upregulation of inflammatory
cytokines as well as chemokines [39,45]. Other posited pathological function of
Th 17 as well as IL-17 is the inhibition of maturation along with survival of
oligodendrocytes (OL’s) [46], besides their apoptosis [47]. OL’s represent
myelinating giant cells of the CNS at the time of formation and right through
adulthood. In case of MS constant demyelination as well as neurodegeneration get
correlated with impairment as well as apoptosis of OL’s resulting from direct
cytotoxicity from Antigen specific T cells along with autoantibodies along with
T cells modulated pro inflammatory cytokines which activate resident microglia [48]. In the last
decade, various studies conducted in EAE mice [9,28,49], in addition to the
immunological examination of MS cases proved a key part of Th 17 Cells in the
etiopathogenesis of MS [29,50]. High amounts of IL-17 generating CD4+T
cells have been observed in the peripheral blood or CSF of RRMS patients at the
time of relapses [50] as well as in MS patients having active disease [51]. Further
the preferential expansion of Th 17 Cells has been associated with the total
amount of active plaques on magnetic resonance imaging (MRI) [52], along with
disease propagation [53]. IL-17A, together with IL-6, has further been illustrated
to facilitate the breakdown of BBB in RRMS patients [54], by changing the
expression of adhesion molecules on endothelial cells [55] as well as promoting
the depolymerisation of the actin cytoskeleton near tight junctions [56]. Like
human Th 17 Cells display an enhanced migratory ability in RRMS patients with
greater disease severity as well as inflammatory lesions [57]. Various
transcription factors, of which most dependable ROR
[58] as well as STAT3
[59], along with cytokines like IL-6, transforming growth factor beta (TGF-
), interleukin
21(IL-21), IL-1-
as well as IL-23 have been detailed to facilitate IL-17
expression as well as Th 17 Cells differentiation in both human as well as mouse
[60,61]. In case of mouse system, the differentiation of Th 17 Cells is
facilitated by TGF-
, along with IL-6, IL-21, IL-1-
[62]. In the human system,
certain GRPS pointed that IL-1-
as well as IL-23 can provide for TGF-
functions by stimulating human Th cell differentiation [63,64]. Rest of
researchers saw a key role of TGF-
along with IL-6, IL-21, IL-1-
, IL-23 for
stimulating the expression of ROR
as well as Th 17 Cells differentiation [65].
In human but not in mouse [66], CD28, a significant costimulatory molecule expressed
on T cells [67], as well as implicated in the control of both tolerance as well
as autoimmunity [68], has further been implicated to stimulate CD4+T
cells to generate inflammatory cytokines as well as chemokines associated with Th
17 Cells phenotype [69] as well as to escalate the inflammatory response in MS by
reprogramming T cells metabolism as well as promoting the expression of Th 17
Cells-related cytokines [70]. Th 17 Cells
show tremendous plasticity along with utilize various functional profiles, based
on the inflammatory or anti inflammatory surroundings [71]. Th 17 Cells have
the ability to differentiate into markedly pathogenic Th 1 like Th 17 as well
as Treg Cells, and actually have certain similar features, like the expression
of CD49b as well as the transcription factor aryl hydrocarbon receptor (AhR) possibly
in view of a shared TGF-
need for their differentiation [72]. Regarding this
Gigliani et al. demonstrated in mice that at the time of resolution of
inflammation, Th 17 Cells go through a reprogramming of transcription, resulting
in their differentiation into T reg Cells in TGF-
presence that is AhR
dependent [73]. Recently Capone et al. encountered the great plasticity of Th
17 Cells in cases of MS, who demonstrated that human Th 17 Cells polarized from
the naive CD4+T cells along with from peripheral blood Th 17 Cells
of RRMS patients upregulated the expression of IL-1R as well as generated greater
amounts of IL-21, IL-2 as well as tumor nacrosis factor (TNF)-
hence resulting
in acquiring a greater pathogenic profile [74]. Constantly escalated expression
of IFN
as well as CXCR3 along with decreased expression of anti-inflammatory
IL-10 was observed in Th 17 Cells from clinically active MS patients [75]. Th
17 Cells further generate GM-CSF, that is another cytokine which has been
pointed to have a key part in the pathogenicity of Th 17 Cells in EAE models
[37]. Further the percentage of IL-17 as well as granulocyte-macrophages colony
stimulating factor (GM-CSF) cogenerating cells were enriched with the cerebro
spinal fluid (CSF) of RRMS [76] and they escalated at the time of relapse [77].
Th 17 Cells have been implicated to generate IL-22 [24], a cytokine which
enhances pro inflammatory innate defense modes in epithelial cells [78], which
along with other cytokines having the Th 17 signature have been implicated in
various inflammatory as well as autoimmune diseases [79].
Th 1 like
Th 17 cells
A novel Th 1
l subset known as Th 1 like Th 17 cells which generate both IFN as well as IL-17
have been isolated in both human as well as mice recently [80]. They express
IL-23 as well as coexpress CXCR3 as well as T-bet along with CCR6 as well as ROR
,
generate lesser quantities of IL-17 A as compared to classical Th 17 cells but greater
amount of IFN
[32], The origin of Th 1 like Th 17 cells is not fully clear but
various studies corroborate the belief that these cells originate from Th 17 cells
in IL-12. TNF-
as well as /or IL-1
presence [81,82]. In mice the greater pathogenicity
of Th 1 like Th 17 cells as compared to Th 17 cells correlated with the
generation of various inflammatory cytokines as well as chemokines like GM-CSF,
IL-22, CC chemokine Ligand 4(CCL4), and CCXCR3 [83]. These results got corroborated
in human system by the evaluation of the transcriptional profile of peripheral
blood Th 17 cells as well as Th 1 like Th 17 cells in MS [75]. These data got
further extended utilizing data from single cell transcriptome evaluation
conducted in experimental autoimmune wncephalitis (EAE), by demonstrating that
the differentiation of Th 17 cells in the CNS from precursors in the Lymph
Nodes was determined by four particular genes, Gpr65. Toso, Plzp, as well as Cd51
that were also implicated in disease proneness [84]. This Th 1
like Th 17 cells participating in neuroinflammation has been examined in
studies in both EAE as well as MS patients [85]. Like Th 1 like Th 17 cells had
the capacity to cross the BBB as well as collect in the CNS of acute EAE as
well as were observed in brain tissues from MS patients [86], as well as upregulated
in RRMS patients during relapse [87]. Myelin-particular Th 1 like Th 17 cells escalated
in both peripheral blood CSF of patients with MS [88], as well as Th17.1 cells,
a Th 1 like Th 17 subpopulation expressing raised amounts of IF, GM-CSF, very
late antigen 4(VLA4), as well as low amounts of IL-17, have been correlated
with the disease activity in case of RRMS patients [89]. The neuropathic actions
of Th 1 like Th 17 cells within CNS are still getting studied but have a chance
to overlap with those observed in Th 1 as well as Th 17 cells (Figure 1).
Th22
Cells
IL-22 is
generated by Th 17 cells as well as by a unique CD4+T cells subset ,
that got discovered in 2000[90] known as Th22 [91]. Other cellular resources
for IL22 are natural killer (NK) cells [92]. ILC3subset of innate lymphoid cells
as well as as well as to a lesser degree, other leukocytes that are macrophages
[93]. IL-22 represents being a, member of the IL-10 family with its main
actions being exerted on non haemopoietic cells like epithelial cells. IL-22, actually
stimulates the regeneration as well as proliferation of epithelial cells as
well as facilitates the generation of antimicrobial peptides needed for
epithelial barrier functions as well as protection against extra cellular (EC)
pathogens [94]. Despite the
part of IL-22 in MS has not been fully investigated, proof that is coming out
points to the involvement of IL-22 in MS immunopathogenesis. Earlier studies by
Kabir et al., observed the upregulation of IL-22R in the brains of MS patients as
well as the part of IL-22 in synergism with IL-17A in disruption of the
integrity of BBB tight junctions by decreasing the expression of occludin in epithelial
cells [94,95]. Data that has been more recent, demonstrated greater amounts of
IL-22 in serum of relapsing MS as compared to healthy donors [77,20-22], as
well as a decrease of IL-22 was seen during the recovery phase of acute EAE [96].
The number of IL-22 generating cells also escalated in both peripheral blood
[97] as well as CSF [76] of RRMS patients that were resistant to IFN therapy [97].
In view of great amounts expression of CCR6, that is needed for the movement
into the CNS, myelin particular IL-22 generating cells can act synergistically
with Th 17 cells, and hence result in breaking of the BBB as well as start the
autoimmune response against constituents of the CNS myelin [54]. Like myelin
particular IL-17 as well as IL-22 generating CD4+T cells resistant
to corticoids has been correlated with active brain lesions in the MS patients,
especially in the plaques and mainly in the astrocytes [95], that might enhance
the permeability of the BBB by liberating matrix metallo proteinases (MMPs) [41].
Significantly recent studies point a part of IL-22 as well as IL-22 generating cells
in controlling the survival as well as action of both OLs as well as astrocytes
in MS [95,98] (Figure 1). Lastly, the isolation of single nucleotide
polymorphism (SNP) of IL-22 binding protein (IL-22BP, also known as IL-2RA), an
antagonist of IL-22, as MS risk gene [99], agrees with the part of IL-22
generating cells in the immunopathogenesis of MS.
Figure 1: Courtesy ref no 40-Pathogenic T helper (Th) cell subsets in multiple sclerosis (MS). Self-reactive Th1, Th22 cell, and Th1-like Th17 subsets activated in peripheral lymph nodes cross the blood–brain barrier (BBB) and migrate into the central nervous system (CNS). In the CNS, T cells are reactivated and, by producing their lineage-defining cytokines, regulate the functions of CNS-resident cells (microglia, astrocytes, oligodendrocytes) by enhancing inflammatory cytokine production, antigen-presenting cell (APC) functions, and apoptosis, thus contributing to axonal damage and demyelination.
Th9 cells
In the last 10yrs a separate subset of effector CD4+T cells subset, having the properties of generating IL-9 got identified. Despite initial correlation of IL-9 in the start with a Th-2 response, studies done more recently gave a newer definition to the IL-9 generating CD4+T cells as Th 9 cells [100]. In MS the part of Th 9 Cells have mainly been evaluated in a mouse model of EAE. The initial study contrasted the encephalitogenic activity of myelin oligodendrocyte glycoprotein (MOG)-particular Th 9, Th 17, as well as Th 1 cells in an EAE model of adoptive transfer. It was shown that Th 9 cells receiving mice had lesser infiltrates of lymphocytes in the meninges as compared to EAE formed by Th 1 as well as Th 17 cells, hence pointing that the mode of EAE induced via Th 9 cells was separate from the mode of Th 1 as well as Th 17 cells [101]. More studies conducted in knockout mice showed contradictory outcomes. Actually mice where IL-9R was absent displayed a course of greater severity, pointing to a controlling part of the cytokine in regulating pathogenic modes of immune responses [102]. Constantly, in EAE, IL-9 was documented to be an anti-inflammatory cytokine generated by non-pathogenic Th 17 cells in conjunction to IL-10 [103]. Conversely, rest of groups observed that IL-9 neutralization as well as IL-9R deficiency ameliorared EAE [104]. Ruocco et al. evaluated the action of IL-9 in MS by associating the amounts of IL-9 in the cerebrospinal fluid (CSF) of 107 RRMS patients on diagnosis along with at the time of course of disease. Intriguingly they observed that IL-9 amounts in the CSF of RRMS patients inversely associated with indices of inflammatory activity, neurodegeneration, as well as propagation of MS –correlated disability [105]. An earlier study in MS patients demonstrated that IL-9 amounts were less at the time of clinical relapses as well as escalated after prednisonole therapy , hence pointing the existence of Th-9 cells in the CSF of MS patients, in which IL-9 could have a protective part in MS disease by decreasing the amounts of IL-17 generated by Th 17 cells [106] as well as the expression of the mitochondrial apoptotic pro-apoptotic factor Bax [107], hence escalating neuronal survival in organotypic human brain slice cultures [108]. In view of the contradictory outcomes documented on the aid of Th-9 cells as well as IL-9 in either MS or EAE, more studies are needed for clarification of the part of Th-9 cells in MS pathogenesis.
Treg
cells
The
formation of autoimmunity gets finely controlled by particular subsets of
Tcells which manipulate immune responses by checking pathogenic Th-cells under
regulation. Initially isolated in 1995 by Sagakuchi et al, Treg Cells were a
subset of CD4+CD25+T cell subset having the capacity of
repressing effector inflammatory Tcells as well as sustain self-tolerance [109].
In the past two decades, work has been done regarding further characterizing Treg
Cells in relation to autoimmune diseases with a minimum of 2 major subsets of
CD4+ Treg Cells have been isolated –natural n Treg Cells which form
in the thymus after the recalling of self-antigens as well as express the
transcription factor forkhead box P3(Fox P3) [110] as well as inducible iTreg
cells, which get produced from the naive CD4+ T Cells under
particular situations of antigen stimulation as well as in the existence of
specific cytokine milieu. iTreg cells is made up of various subsets that are
Fox P3Treg cells, type1 regulatory (Tr1) Tcells generating large amounts of
IL-10 as well as Th3 generating TGF [111]. In humans, circulating iTreg
further show large amounts of phenotypic heterogeneity strictly associated with
their differentiation status as well as immunosuppressive functions [112]. Changes
in both amount as well as repressive functions of separate Treg subsets have
been documented in MS, particularly in RRMS patients [113], as well as exert disease
actions on Treg cells [112].
T cell
targeting treatment
The role of
autoreactive inflammatory Tcell subsets in the MS pathogenesis gets
corroborated by knowing that maximum of the approved disease-manipulating
treatments target T cells. Glatiramate acetate (GA), a mixture of synthetic
polypeptides, having only 4 amino acids’s glutamate, lysine, alanine, as well
as tyrosine got approval through FDA for therapy of RRMS in 1996. Despite the
mode of action of GA are not clear, various studies point to a key part of GA
on various antigen presenting cells (APC), by facilitating the differentiation
of microglia, IFN-, an antiviral cytokine, having immunosuppressive as well as
antiproliferative actions , has been the 1st line drug approved via
FDA for the therapy of RRMS in 1993. The maximum significant action of IFN-
on
Tcells are the inhibition of Tcell activation as well as liberation of
cytokines [114], the shift of Th cells from an inflammatory Th1 to an
anti-inflammatory Th2 cell phenotype, the decrease of both Th 17 as well as
IL-17 amounts , as well as an escalation of suppressive Treg [115]. A massive
reduction of IL-22 in the serum of RRMS patients following 6 as well as 12 mths
of therapy with IFN-
, has also been recently documented as well as
corroborated the reduction of MS severity [116]. macrophages
as well as dendritic cells (DCs) into the suppressive M2 phenotype generating anti-
inflammatory cytokines like TGF-
as well as IL-10 [117]. The outcomes of these
actions on T cells involve the shift of reactive T cells from Th1 to Th2 [118]
as well as the enhancement of Treg [119], which repress the action of all
autoreactive inflammatory Th cell subsets. Regarding this Spadaro etal., showed
that in GA-responder of RRMS patients, anti- inflammatory Treg cells remain for
greater than 10yrs following GA therapy [120]. Akin to IFN-
, GA is not
efficacious in decreasing the disability of propagating MS [121], however, due
to its long term effectiveness as well as safety it is the commonest 1st
line therapy registered all over the world for RRMS [122]. Dimethyl
fumarate (DMF), a fumaric acid ester having anti- inflammatory action got
approval for therapy of RRMS patients in 2013 [123]. It causes both direct as
well as indirect actions on Tcells [124]. DMD decreases the generation of inflammatory
cytokines like IL-1
tumor nacrosis factor (TNF) as well as IL-6 in microglia
[125], as well as inhibits inflammatory cytokines generation in human peripheral
blood mononuclear cells (PBMC) [126], possibly by influencing the activation of
nuclear factor (NF)-
B family of
transcription factors [127]. Besides a total decrease in peripheral T cell
numbers seen in RRMS
patients given therapy with DMF [128], marked alterations in circulating Th
cell subsets were further seen [129], with a special decrease of memory CD4+
T Cells [128], DMF therapy further stimulates a shift of the balance various Th
cell subsets, with a decrease of IFN-
generating Th1 as well as IL-17
generating Th-17 cells as well as an escalation of IL-4 generating Th2 cells [130].
Lastly an ideal response to DMF therapy also correlated with an enhancement of
Treg cells in the peripheral blood of RRMS patients [129,131]. Fingolimod,
that is a 1st oral treatment molecule that got approval for RRMS [132,133],
works as an antagonist of sphingosine-1-phosphate receptor(SIPR), which is
necessary for the exit of T lymphocytes from Lymph Nodes [134]. Via binding of SIPR
as well as stimulating its internalization, Fingolimod modulates the naive as
well as effector memory T lymphocytes are set apart from the lymphoid organs [135].
A detailed evaluation of effectiveness of Fingolimod on various T cell subsets in
RRMS patients who received therapy with Fingolimod showed a selective decrease in
the frequency of both IFN-
as well as IL-17 generating cells [136]. Dominuguez-Villar
et al, demonstrated that Fingolimod therapy robustly decreased central memory Th1,
Th17, as well as Th 1 like Th 17 cells while effector memory Th1, as well as Th
1 like Th 17 cells subsets were not that much influenced. The evaluation of Fingolimod
actions on T cells at the time of 12 mths of also experienced a manipulation of
phenotype of Th 17 cells as well as Treg cells. Effector Th Cells displayed a
reduction of the exhaustion markers like programmed death1 (PD1) as well as Tcell
immunoglobin as well as mucin domain containing 3(TIMS) [137]. Further, the
repressive functions of Treg in Fingolimod therapy receiving RRMS patients were
further upregulated, hence pointing to another part of Fingolimod in restoring peripheral
tolerance, apart from the retention of T lymphocytes in Lymph Nodes [137,138]. Natalizumab
is a disease manipulating drug which influences the movement of T cells was
approved in 2004. It represents a monoclonal Ab (mAb) which targets VLA4 expressed
by activa.ted T as well as B lymphocytes [115] as well as inhibits VLA4
interaction with the vascular cellular adhesion molecule1(VCAM1) expressed on
endothelial cells [139], hence blocking T cells penetration of the BBB [91-94],
especially the Th 1 like Th 17.1 subset [89]. Inspite of the effectiveness of
both Fingolimod as well as Natalizumab in peripheral setting apart of
inflammatory T cells as well as avoiding their migration across BBB,
respectively, aberrant inflammatory actions as well as recurrence along with clinical
relapses have been seen following cessation of Fingolimod [140], as well as Natalizumab
therapy in case of MS patients [141]. Furthermore continued therapy with Natalizumab
been correlated with the reactivation of latent John Cunningham virus, hence
facilitating propagating multifocal leukoencephalopathy [142]. Two
humanized mAb targeting T cells for RRMS got approved by food and drug
administration (FDA) as well as EMA. Alemtuzumab, got approval in 2013, which
targets CD52 which is expressed at great amounts on B as well as T cells [143],
hence resulting in depletion of both CD4+ T Cells as well as CD8+Tcells
by Ab dependent (ADCC) as well as complement dependent cytotoxicity(CDC).
Daclizumab that got approval in 2016, represent a mAb that targets CD25, the
high affinity subunit of IL-2 receptor (IL-2R), that gets expressed on activated
T Cells as well as Treg [144]. In comparison to Alemtuzumab, Daclizumab does
not bring about T cells by ADCC or CDC however, by neutralizing IL2 binding to CD25,
as well as the high affinity IL-2R, like NK cells as well as resting T cells [145].
In view of high risk of serious as well as potentially fatal immune responses
like encephalitis as well as meningomyelitis, in May 2018, the marketing authority
of Daclizumab was stopped by EMA [146]. In November 2019 EMA further
recommended a restrictive utilization of Alemtuzumab (lemtrada) for RRMS patients
with markedly active disease inspite of therapy with one of the disease manipulating
therapy [147]. Intriguingly, Gingele et al. ocumented recently that
ocrelizumab, a humanized mAb targeting CD20, that got approval in 2017 for
relapsing MS as well as PPMS as well as believed to particularly targeting B [148],
was further efficacious in removing a markedly activated CD20+Tcell
subset generating inflammatory cytokines [149]. As CD20+
inflammatory Tcells are located in the peripheral blood as well as brain of MS
patients [149] their removal might explain the effectiveness of ocrelizumab therapy. Besides the
approved T cells targeting therapies, various therapeutic methods with the
objective of inhibition of autoreactive inflammatory Tcells are getting
evaluated currently in various clinical trials of MS [150]. Of the lot, maximum
effectiveness offered by mAb targeting Th17-associated cytokines, especially IL-17A
that are undergoing trials for MS. Especially, Sekukinumab, a totally humanized
anti IL-17A mAb with the objective of repressing pathogenic Th17, as well as Th
1 like Th 17 cell subset, got approval in 2005 as 1stline treatment for
psoariasis [151]. The significant decrease (67%) of new magnetic resonance
imaging(MRI) lesions seen in 73 treatment naive RRMS patients foll 24 wks of
therapy with Sekukinumab [152] resulted in a placebo controlled randomized
phase II clinical trial(NCT01874340). Nevertheles, this trial was ended by the
sponsor on the basis of formation of another anti IL-17A mAb, Ixekizumab, having
better action act Sekukinumab for psoariasis [153] as well as better potential
for therapy of MS. Clinical trials are still ongoing. Besides
that trials are on regarding utilization of adipose derived stem cells in
refractory MS (reviewed by us) [154]. The diagnosis of multiple
sclerosis in children, like in adults, needs proof of dissemination of
inflammatory activity in > than one region in the CNS (dissemination in
space) and recurrent disease over time (dissemination in time). The
identification of myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) and
aquaporin-A antibodies (AQP4-Ab), and the consequent discovery of their
pathogenic mechanisms, have led to a shift in the classification of relapsing
demyelinating syndromes. This is reflec ted in the 2017 revised criteria for the
diagnosis of multiple sclerosis, which emphasizes the exclusion of multiple
sclerosis mimics and aims to enable earlier diagnosis and thus treatment
initiation. The long-term efficacy of individual therapies initiated in
children with multiple sclerosis is hard to evaluate, owing to the small numbers
of patients who have the disease, the relatively high number of patients who
switch therapy, and the need for long follow-up studies. Nevertheless, an
improvement in prognosis with a globally reduced annual relapse rate in
children with multiple sclerosis is now observed compared with the pretreatment
era, indicating a possible long-term effect of therapies. Given the higher
relapse rate in children compared with adults, and the impact MS has on
cognition in the developing brain, there is a query whether rapid enhancement or
potent agents should be used in children, while the short- and long-term safety
profiles of these drugs are being established. With the results of the first
randomized controlled trial (RCT) of fingolimod versus interferon-
1a in
paediatric MS published in 2018 and several clinical trials underway, there is
hope for further progress in the field of paediatric multiple sclerosis. Thus early
and precise diagnosis of MS is crucial. The discovery of antibody-mediated
demyelination has changed the diagnosis and management of relapsing
demyelination syndromes. Traditional escalation therapy is being challenged by
induction therapy [155].
Over the
past 2 decades our insight on the immunopathogenetic modes in MS has robustly escalated,
hence observing a basic part of encephalotigenic Th cells, especially Th 1 like
Th 17, Th 17, Th 22, as well as GMCSF generating CD4+ T Cells, in
starting as well as continuation of the inflammatory responses as well as the
subsequent neurodegeneration in MS. Hence, most of the treatment protocols that
have received approval aim to ameliorate the inflammatory T helper cells as
well as emerging T cell-based therapies having greater selectivity are the
currently ongoing Clinical trials for MS. The differences in adult and
paediatric MS has been touched along with slow escalation of drugs with
provisional damage to growing brain and subsequent influence in cognition.